Table of Contents

1 Introduction

1.1 Purpose and Scope .. 1–1
1.2 Items Not Covered in This GR 1–2
1.3 Requirements Terminology ... 1–2
1.4 Requirement Labeling Conventions 1–3
 1.4.1 Numbering of Requirement and Related Objects 1–3
 1.4.2 Requirement, Conditional Requirement, and Objective Identification . 1–4
1.5 Organization ... 1–4
1.6 Reasons for GR-1089-CORE ... 1–5
 1.6.1 Reasons for GR-1089-CORE, Issue 5 1–5
 1.6.2 Reasons for GR-1089-CORE, Issue 4 1–6
 1.6.3 Reasons for GR-1089-CORE, Issue 3 1–8
1.7 Application of This Document .. 1–9
1.8 Guidelines for Equipment Evaluation 1–10
1.9 Documentation .. 1–10
 1.9.1 General ... 1–10
 1.9.2 Root Cause Analysis ... 1–11
1.10 Number of Samples To Be Tested 1–11
1.11 Relation to Other Telcordia Documents 1–11

2 System-Level Electrostatic Discharge (ESD) and Electrical Fast Transient (EFT)

2.1 System-Level Electrostatic Discharge (ESD) 2–1
 2.1.1 Overview ... 2–1
 2.1.2 ESD Immunity Criteria .. 2–1
 2.1.2.1 Immunity Criteria — Normal Operation 2–2
 2.1.2.2 Immunity Criteria — Installation and Maintenance 2–2
 2.1.2.3 ESD Warning Label Requirements 2–2
 2.1.2.4 Equipment-Specific Requirements 2–3
 2.1.3 Service-Affecting Responses and Manual Interventions 2–3
 2.1.4 ESD Test Methods and Procedures 2–3
 2.1.4.1 Test Methods — Normal Operation 2–4
 2.1.4.2 Test Methods — Installation and Maintenance 2–4
 2.1.4.3 Selection of Test Points 2–4
 2.1.4.4 EUT Operating Conditions 2–5
 2.1.4.5 ESD Test Site .. 2–6
 2.2 Electrical Fast Transient (EFT) 2–6
 2.2.1 EFT Test Methods and Procedures 2–7

3 Electromagnetic Interference

3.1 General ... 3–1
 3.1.1 Overview ... 3–1
 3.1.2 Intent of EMI Criteria .. 3–1
 3.1.3 FCC Part 15 Criteria ... 3–2
 3.1.4 FCC Part 68 and ACTA Technical Criteria 3–3
 3.1.5 Documentation ... 3–4
3.2 Emission Criteria .. 3–4
 3.2.1 Radiated Emission Criteria .. 3–5
 3.2.1.1 Electric Fields Radiated Emission Criteria for Unintentional Radiators ... 3–5
 3.2.1.2 Electric Fields Radiated Emission Criteria for Intentional Radiators ... 3–9
 3.2.1.3 Magnetic Fields Radiated Emission Requirement 3–10
 3.2.2 Conducted Emission Criteria for Power Ports 3–10
 3.2.2.1 Conducted Emission Requirements for AC Power Ports 3–11
 3.2.2.2 Conducted Emission Requirements for AC and DC Power — Current ... 3–11
 3.2.3 Conducted Emission Criteria for Telecommunications Ports . 3–12
 3.2.3.1 Conducted Emission Requirements for Signal Leads — Current ... 3–12
 3.2.3.2 Conducted Emission Requirements for Analog Voiceband Leads ... 3–13
 3.2.3.3 Conducted Emission Requirements for Telecommunications Leads ... 3–14
 3.3 Immunity Criteria ... 3–17
 3.3.1 Radiated Immunity Criteria ... 3–18
 3.3.1.1 Electric Fields Radiated Immunity Criteria with Doors and Covers Closed .. 3–18
 3.3.1.2 Electric Fields Radiated Immunity Criteria with Doors and Covers Open .. 3–18
 3.3.2 Conducted Immunity Criteria for AC and DC Power Ports 3–18
 3.3.3 Conducted Immunity Criteria for Telecommunications Ports 3–19
 3.3.3.1 Conducted Immunity Requirements for Signal Leads 3–19
 3.3.3.2 Conducted Immunity Requirements for Analog Voiceband Leads ... 3–19
 3.3.3.3 Conducted Immunity Requirements for Voiceband and Telecommunications Leads .. 3–19
 3.4 Measurement Procedures Associated with Emissions 3–20
 3.4.1 Scope .. 3–20
 3.4.2 Related Standards ... 3–20
 3.4.3 Measuring Instrumentation .. 3–20
 3.4.3.1 General .. 3–20
 3.4.3.2 Analog Voiceband Leads Emissions Measurement Instrumentation ... 3–21
 3.4.3.3 Telecommunications Leads Emissions Measurement Instrumentation ... 3–22
 3.4.3.4 Measuring Instrument Calibration 3–22
 3.4.3.5 Detector Function Selection and Bandwidth 3–22
 3.4.3.6 Antennas ... 3–23
 3.4.4 General Test Conditions ... 3–27
 3.4.4.1 Emission Measurement Uncertainty 3–27
 3.4.4.2 Testing at an Open-Area Test Site (OATS) 3–27
 3.4.4.3 Testing at User’s Installation (On-Premises Testing) 3–27
 3.4.4.4 Testing in a Shielded Enclosure 3–29
 3.4.4.5 Subsystem Emission Limits Allocation 3–29
 3.4.4.6 Units of Measurement .. 3–30
 3.4.4.7 Data Reporting Format .. 3–30
 3.4.4.8 Test Conditions for EUT .. 3–30
 3.4.4.9 Test Environment ... 3–33
 3.4.4.10 Arrangements of EUT .. 3–34
 3.4.4.11 Arrangements of Intentional Radiators 3–34
3.4.5 Conducted Emissions Measurements
- 3.4.5.1 Measurement Procedures
- 3.4.6 Radiated Emission Measurements
- 3.4.6.1 Determination of Test Radial
- 3.4.6.2 Radiated Radio Noise Tests
- 3.4.7 Retesting With System Evolution and Growth
 - 3.4.7.1 System Evolution
 - 3.4.7.2 System Growth

3.5 Measurement Procedures Associated With Immunity
- 3.5.1 Scope
- 3.5.2 Measuring Instrumentation
 - 3.5.2.1 Receivers
 - 3.5.2.2 Current Probes
 - 3.5.2.3 Antennas
 - 3.5.2.4 Signal Sources
- 3.5.3 Test Conditions for EUT
 - 3.5.3.1 Non-Switching Systems
 - 3.5.3.2 Bit Error Rate (BER)
 - 3.5.3.3 Synchronization
 - 3.5.3.4 Voiceband Noise
- 3.5.4 Data Reporting Format
- 3.5.5 Radiated Immunity Measurements
 - 3.5.5.1 Shielded Enclosures
 - 3.5.5.2 Subsystem Testing
 - 3.5.5.3 Measurement Procedures
- 3.5.6 Conducted Immunity Measurements
 - 3.5.6.1 Test Signal Modulation
 - 3.5.6.2 Frequency Scanning and Test Selection
 - 3.5.6.3 Calibration of Test Signal
 - 3.5.6.4 AC and DC Leads (Common-Mode Injection)
 - 3.5.6.5 Telecommunications Ports - Voiceband, Telecommunications and Signal Leads (Common-Mode Injection)

4 Lightning and AC Power Fault
- 4.1 Overview
- 4.2 Electrical Protection on Paired-Conductor Systems
 - 4.2.1 Voltage-Limiting Protectors
 - 4.2.2 Current-Limiting Protectors
 - 4.2.3 Fuse Links
- 4.3 Lightning on Paired-Conductor Cables
 - 4.3.1 Longitudinal Surges
 - 4.3.2 Metallic Surges
- 4.4 AC Power Fault on Paired-Conductor Cables
 - 4.4.1 Power Contact to Telecommunications OSP
 - 4.4.2 Fault Induction From Electric Power Lines
- 4.5 Characterization of Test Generators
- 4.6 Criteria for Equipment Interfacing With Telecommunications Ports
 - 4.6.1 First-Level and Second-Level Criteria
 - 4.6.2 Testing Conditions of Telecommunications Ports
4.6.2.1 Lightning Surge and AC Power Fault Test Connections (Telecommunications Port) 4–11
4.6.2.2 EUT Grounding ... 4–13
4.6.2.3 DC Return ... 4–13
4.6.2.4 Test Setup for Equipment Providing or Receiving Remote Power 4–13
4.6.3 Number of Samples To Be Tested .. 4–21
4.6.4 Fire Hazard Indicator for Second-Level Criteria 4–21
4.6.5 Short-Circuit Tests (Telecommunications Type 1, 3, and 5 Ports) ... 4–22
4.6.6 First-Level Lightning Surge Tests (Telecommunications Type 1, 3, and 5 Ports) .. 4–22
4.6.6.1 Equipment Ports With Secondary Protection 4–24
4.6.7 First-Level Lightning Protection Tests (Telecommunications Type 1, 3, and 5 Ports) .. 4–26
4.6.8 Second-Level Lightning Surge Tests (Telecommunications Type 1, 3, and 5 Ports) .. 4–28
4.6.8.1 Equipment Ports With Secondary Protection 4–29
4.6.9 First-Level Intra-Building Lightning Surge Tests (Telecommunications Type 2 and 4 Ports) 4–30
4.6.9.1 Ports Connected to Unshielded Cables 4–31
4.6.9.2 Ports Connected to Shielded Cables 4–34
4.6.10 First-Level AC Power Fault Tests (Telecommunications Type 1, 3, and 5 Ports) .. 4–36
4.6.10.1 Equipment Ports With Secondary Protection 4–36
4.6.11 Current-Limiting Protector Tests for Equipment To Be Located at Network Facilities (Type 1 Telecommunications Port) 4–39
4.6.11.1 Test Procedure .. 4–40
4.6.12 Second-Level AC Power Fault Tests for Equipment To Be Located at Network Facilities (Type 1 Telecommunications Port) 4–45
4.6.12.1 Equipment Ports With Secondary Protection 4–46
4.6.13 Second-Level AC Power Fault Tests for Series-Type Equipment To Be Located at Network Facilities (Type 1 Telecommunications Port) 4–48
4.6.14 Fusing Coordination Tests for Equipment To Be Located on Customer Premises and OSP Facilities (Type 3 and 5 Telecommunications Ports) .. 4–49
4.6.14.1 Test Procedure .. 4–49
4.6.15 Second-Level AC Power Fault Tests for Equipment To Be Located on Customer Premises and OSP Facilities (Type 3 and 5 Telecommunications Ports) .. 4–51
4.6.15.1 Equipment Ports With Secondary Protection 4–53
4.6.15.2 Tests for Ungrounded Exposed Conductive Surfaces 4–55
4.6.16 Second-Level AC Power Fault Tests for Series-Type Equipment To Be Located on Customer Premises and OSP Facilities (Type 3 and 5 Telecommunications Ports) .. 4–56
4.6.17 Second-Level Intra-Building AC Power Fault Tests for Equipment To Be Located on Customer Premises (Type 4 Telecommunications Port) 4–57
4.7 Lightning Protection Tests for Equipment To Be Located in High-Exposure Customer Premises and OSP Facilities (Type 3 and 5 Telecommunications Ports) .. 4–58
4.8 Criteria for Equipment Interfacing With Agreed Primary Protection 4–60
4.9 Criteria for Equipment With Integrated Primary Protection 4–63
4.9.1 Equipment Classification ... 4–65
4.9.2 Protector Requirements ... 4–67
4.9.3 Lightning Surge and Power Fault Tests for Protected Circuits 4–68
 4.9.3.1 Overcurrent Protection Coordination Test for Protected Circuits . 4–70
4.9.4 Fusing Coordination for Unprotected Circuits 4–70
 4.9.4.1 Fusing Coordination for Circuits Suitable for Fusing 4–71
 4.9.4.2 Fusing Coordination Test for Circuits Not Acting as Fuse Links . 4–73
4.9.5 Dielectric Withstand .. 4–74
4.9.6 Stub Cable Requirements .. 4–75
4.9.7 AC Power Fault Immunity .. 4–75
4.9.8 Lightning Surge Tests ... 4–76
 4.9.8.1 Lightning Surge Tests for Severe Climatic Conditions 4–77
4.10 Criteria for Equipment Interfacing With Coaxial Cable Ports 4–77
 4.10.1 Number of Samples To Be Tested 4–79
 4.10.2 Short-Circuit Tests ... 4–79
 4.10.3 Broadband Communications Equipment Intended for Use Without External Protectors 4–79
 4.10.3.1 First-Level Lightning and Power Fault Tests 4–80
 4.10.3.2 Second-Level Lightning and Power Fault Tests 4–81
 4.10.4 Broadband Communications Equipment Intended for Use With an External Protector 4–83
 4.10.4.1 First-Level Lightning and Power Fault Tests 4–83
 4.10.4.2 Second-Level Lightning and Power Fault Tests 4–84
 4.10.5 First-Level Intrabuilding Surge Tests 4–86
 4.10.6 Additional Criteria for Equipment Intended for the OSP 4–87
4.11 Lightning Criteria for Equipment Interfacing With Antennas 4–88
4.12 Lightning Criteria for Equipment Interfacing With AC Power Port(s) 4–89
 4.12.1 Equipment Used in Facilities With an External SPD 4–90
 4.12.2 Equipment Used in Facilities Without an External SPD 4–91
4.13 Lightning Criteria for Equipment Interfacing With DC Power Port(s) 4–92
 4.13.1 Tests Directly on DC Power Port 4–92

5 Steady-State Power Induction

 5.1 Overview .. 5–1
 5.2 Longitudinal Induction Criteria for Long (> 20 kft) Loops 5–1
 5.2.1 Longitudinal Induction Test Circuit for Long (> 20 kft) Loops . 5–2
 5.2.2 Calibration Procedure 5–5
 5.2.3 Test Procedures ... 5–5
 5.2.3.1 Test Procedure for a CO Switching System Line Circuit 5–5
 5.2.4 Performance Criteria 5–7
 5.2.5 Noise Performance for Voiceband Circuits 5–7
 5.3 Longitudinal Induction Criteria for Short (< 20 kft) Loops 5–8
 5.3.1 Longitudinal Induction Test Circuit for Short (< 20 kft) Loops . 5–8
 5.3.2 Calibration Procedure 5–11
 5.3.3 Test Procedures ... 5–11
 5.3.3.1 Test Procedure for ISDN Technology 5–11
 5.3.3.2 Test Procedure for DSL Technologies 5–12
 5.3.3.3 Test Procedure for RT Line Circuits of a DLC System 5–12
 5.3.4 Performance Criteria 5–13
 5.3.5 Noise Performance for Voiceband Circuits 5–13
5.4 Longitudinal Induction Criteria for Analog Trunks .. 5–16
 5.4.1 Longitudinal Induction Test Circuit for Trunks .. 5–17
 5.4.2 Calibration Procedure .. 5–20
 5.4.3 Test Procedure ... 5–20
 5.4.3.1 Test Procedure for Analog Trunk Circuits .. 5–20
 5.4.3.2 Test Procedure for DLC System Interfaces Between RT and COT 5–20
 5.4.4 Performance Criteria ... 5–21
 5.4.5 Noise Performance for Voiceband Circuits .. 5–22
5.5 Longitudinal Induction Criteria for Coaxial Cables 5–23
 5.5.1 Longitudinal Induction Test Circuit for Coaxial Cables 5–23
 5.5.2 Test Procedure ... 5–24
 5.5.3 Performance Criteria ... 5–25

6 DC Potential Difference

7 Electrical Safety Criteria

 7.1 Overview ... 7–1
 7.2 Listing Requirements .. 7–1
 7.3 Classification of Voltages .. 7–2
 7.3.1 Continuous Voltage and Current Limits .. 7–2
 7.3.1.1 Class A1 Voltage Limits ... 7–4
 7.3.1.2 Class A2 Voltage Limits ... 7–7
 7.3.1.3 Class A3 Voltage Limits ... 7–10
 7.3.1.4 Class AB Voltage Limits ... 7–13
 7.3.1.5 Class B Voltage Limits ... 7–13
 7.3.1.6 Class C Voltage Limits ... 7–13
 7.4 Continuous Source Requirements .. 7–13
 7.4.1 Class A1 Voltage Accessibility Requirements .. 7–13
 7.4.2 Class A2 Voltage Accessibility Requirements .. 7–16
 7.4.3 Class A3 Voltage Accessibility Requirements .. 7–16
 7.4.4 Class AB Voltage Accessibility Requirements 7–17
 7.4.5 Class B Voltage Accessibility Requirements ... 7–17
 7.4.6 Class C Voltage Accessibility Requirements ... 7–17
 7.5 Duration-Limited Source Requirements ... 7–17
 7.5.1 Interrupted/Tripped Sources .. 7–17
 7.5.1.1 Ring-Trip Test Procedure .. 7–19
 7.5.2 Transient Sources .. 7–19
 7.6 Power Limitation Requirement .. 7–20
 7.7 Leakage Currents From Exposed Surfaces ... 7–21
 7.7.1 General Considerations .. 7–21
 7.7.2 Leakage Current Requirements .. 7–22
 7.7.2.1 Leakage Current Requirements for Large-Area Contact 7–22
 7.7.2.2 Leakage Current Requirements for Small-Area Contact 7–22
 7.7.2.3 Leakage Current Between Surfaces of Equipment 7–22

8 Corrosion

 8.1 Polarity of DC Voltages Applied to OSP Cabling .. 8–1
 8.2 Magnitude of DC Voltages Applied to OSP Cabling 8–1
9 Bonding and Grounding

9.1 Scope .. 9–1
9.2 General Requirements Principles 9–1
9.3 Equipment Grounding Systems 9–2
 9.3.1 Common Bonding Network (CBN) 9–3
 9.3.2 Isolated Bonding Network (IBN) 9–3
9.4 AC Equipment Grounding 9–4
9.5 Communication Equipment Grounding 9–4
 9.5.1 Network Telecommunication Facilities 9–5
 9.5.2 Locations Where the NEC Applies 9–5
 9.5.3 Outside Plant 9–6
9.6 Equipment Unit Bonding and Grounding 9–6
9.7 Provisions for Equipment Unit Assembly Bonding and Grounding 9–7
 9.7.1 Connectors and Connection Methods for Equipment Unit Assemblies 9–8
 9.7.2 Bonding of Circuit Packs 9–8
9.8 DC Power System Grounding 9–9
 9.8.1 Centralized Power Sources 9–9
 9.8.2 Embedded Power Sources 9–9
 9.8.3 Bonding of Battery Return (BR) Input Terminals ... 9–12
9.9 Bonding and Grounding Conductor and Connection Requirements 9–12
 9.9.1 Bonding and Grounding Conductors 9–13
 9.9.2 Connections 9–13
 9.9.3 Connectors ... 9–14
9.10 Short-Circuit Tests 9–14
 9.10.1 DC Power Sources 9–14
 9.10.2 AC Power Sources 9–17
9.11 Other Grounding Considerations 9–18
9.12 Compatibility of Former IBN Equipment With CBN Currents 9–18
 9.12.1 Test Conditions for EUT 9–18
 9.12.1.1 Conditioning of the EUT 9–18
 9.12.1.2 Interfacing Units and Simulators 9–18
 9.12.1.3 DC Power Leads 9–19
 9.12.1.4 Bonding Conductors 9–19
 9.12.1.5 Shelf-Mounted EUT 9–20
 9.12.1.6 Reference Plane 9–20
 9.12.1.7 Test Environment 9–20
 9.12.2 Identification of Test Points 9–20
 9.12.3 DC Fault Test 9–21
 9.12.4 Frame EFT Test 9–22
 9.12.4.1 Laboratory Arrangement of the EUT 9–23
 9.12.4.2 In-Situ Arrangement of the EUT 9–24
 9.12.5 Frame Surge Test 9–24
 9.12.5.1 Laboratory Arrangement of the EUT 9–25
 9.12.5.2 In-Situ Arrangement of the EUT 9–25
 9.12.6 AC Fault Test 9–26
9.13 Grounding Connector for Equipment With Integrated Primary Protection 9–28
 9.13.1 Grounding Conductors in the EIPP 9–29
10 Criteria for DC Power Port of Telecommunications Load Equipment

10.1 Input DC Voltage ... 10–1
10.2 Minimum Operating Voltage ... 10–1
10.3 Undervoltage Transient .. 10–2
10.4 Overvoltage Transient ... 10–3
10.5 Impulse Transient ... 10–4
10.6 Single Transient ... 10–4
10.7 Noise Returned by the Network Equipment (Noise Emission) . 10–5
 10.7.1 Voice Frequency Noise Emission 10–5
 10.7.2 Wideband Frequency Noise Emission 10–5
 10.7.3 Broadband Noise Emission 10–5
10.8 Power Input Noise Immunity ... 10–6
 10.8.1 Voice Frequency Noise Immunity 10–6
 10.8.2 Wideband Frequency Noise Immunity 10–6
 10.8.3 Broadband Noise Immunity 10–6

Appendix A: Definition of Double-Exponential Impulse Waveform

Appendix B: Application Guidelines

B.1 Application Guidelines for Equipment Ports B–2

Appendix C: References

C.1 Reference Note ... C–4
C.2 Contact Telcordia ... C–4
C.3 Order Documents Online From the Telcordia Information SuperStore C–4
C.4 Telcordia Web Sites for Generic Requirements Information C–5
C.5 Telcordia Licensing Agreements C–5
C.6 To Obtain Additional Reference Material C–6

Appendix D: Definitions

Appendix E: Acronyms

Requirement-Object Index
List of Figures

<p>| Figure 3-1 | R3-2 [8] Requirement and O3-3 [9] Objective Limits for Class-A Electric Field Emissions at 3-Meter and 10-Meter Distances | 3–7 |
| Figure 3-2 | R3-4 [10] Requirement Limits for Electric Field Emissions at 3-Meter and 10-Meter Distances | 3–9 |
| Figure 3-3 | Conducted Emissions Limits on Signal Leads | 3–13 |
| Figure 3-4 | Analog Voiceband Leads Conducted Emission Limits (Metallic) | 3–16 |
| Figure 3-5 | Analog Voiceband Leads Conducted Emission Limits (Longitudinal) | 3–17 |
| Figure 3-6 | Termination Networks for Conducted Measurements of Analog Voiceband Leads (Metallic and Longitudinal) | 3–25 |
| Figure 3-7 | Balun Termination (Metallic and Longitudinal), 12 kHz to 6 MHz | 3–26 |
| Figure 3-8 | Test Setup for Conducted Emission Tests on AC and DC Power Ports (Current) | 3–38 |
| Figure 3-9 | Test Setup for Conducted Emission Tests on Signal and Telecommunications Leads | 3–39 |
| Figure 3-10 | Test Configuration for Measuring Conducted Emissions From Analog Voiceband Leads | 3–39 |
| Figure 3-11 | Synchronization Test Configuration | 3–45 |
| Figure 3-12 | Cable Arrangement for EUTs With Overhead Cables | 3–50 |
| Figure 3-13 | Injection Probe Calibration Setup | 3–55 |
| Figure 3-14 | Test Setup for Conducted Immunity Tests on AC and DC Power Ports | 3–56 |
| Figure 3-15 | Test Setup for Conducted Immunity Tests for Telecommunications Ports (Voiceband, Signal, and Telecommunications Leads) | 3–57 |
| Figure 4-1 | Typical Lightning or AC Power Test Generator | 4–8 |
| Figure 4-2 | Application of Lightning and AC Power Fault Test Voltages | 4–12 |
| Figure 4-3 | Example Test Circuit for Longitudinal Lightning Surge Test — Two-Wire Interface Configuration A5 | 4–15 |
| Figure 4-4 | Example Test Circuit for Metallic Lightning Surge Test — Two-Wire Interface Configuration A1 or A2 | 4–15 |
| Figure 4-5 | Example Test Circuit for Longitudinal Lightning Surge Test — Four-Wire Interface Configuration A5 or A6 | 4–17 |
| Figure 4-6 | Example Test Circuit for Metallic Lightning Surge Test — Four-Wire Interface Configuration A1, A2, A3, or A4 | 4–18 |
| Figure 4-7 | Example Test Circuit for Longitudinal Lightning Surge Test — Two-Wire Interface Configuration A5 | 4–19 |
| Figure 4-8 | Example Test Circuit for Metallic Lightning Surge Test — Two-Wire Interface Configuration A1 or A2 | 4–20 |
| Figure 4-9 | Test Arrangement for Determining Protection Coordination | 4–28 |
| Figure 4-10 | Test Circuit for Multi-Pair Ports — Metallic Test (Applies to One Conductor at a Time) | 4–34 |
| Figure 4-11 | Test Circuit for Multi-Pair Ports — Longitudinal Test | 4–34 |
| Figure 4-12 | Test Circuit for Paired-Conductor Ports Providing a Connection Means for the Shielded Cable | 4–36 |
| Figure 4-13 | High-Impedance Inductive Source Test Circuit | 4–39 |
| Figure 4-14 | Upper Limit of Time-Current Characteristic of External Current-Limiter Indicator/Wiring Simulator | 4–42 |</p>
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-15</td>
<td>Second-Level AC Power Fault Test Arrangement Using External Current-Limiter Indicator/Wiring Simulator</td>
<td>4–43</td>
</tr>
<tr>
<td>4-16</td>
<td>Second-Level AC Power Fault Pair-to-Pair Test Arrangement for Four-Wire Interfaces Using External Current-Limiter Indicator/Wiring Simulator</td>
<td>4–44</td>
</tr>
<tr>
<td>4-17</td>
<td>Longitudinal Test Circuit for Equipment To Be Located on High-Exposure Customer Premises and OSP Facilities</td>
<td>4–60</td>
</tr>
<tr>
<td>4-18</td>
<td>Illustration of Components and Circuits in EIPP</td>
<td>4–65</td>
</tr>
<tr>
<td>4-19</td>
<td>Test Circuit for Coaxial Cable Ports Providing a Connection Means for the Shielded Cable</td>
<td>4–87</td>
</tr>
<tr>
<td>5-1</td>
<td>Longitudinal Induction Test Circuit for Long (> 20 kft) Loops</td>
<td>5–3</td>
</tr>
<tr>
<td>5-2</td>
<td>Line Circuit Test Arrangement</td>
<td>5–6</td>
</tr>
<tr>
<td>5-3</td>
<td>Longitudinal Induction Test Circuit for Short (< 20 kft) Loops</td>
<td>5–9</td>
</tr>
<tr>
<td>5-4</td>
<td>Example of a Test Circuit Used for Testing ISDN for Longitudinal Induction Immunity Criteria</td>
<td>5–14</td>
</tr>
<tr>
<td>5-5</td>
<td>Digital Subscriber Line (DSL) Test Arrangement</td>
<td>5–15</td>
</tr>
<tr>
<td>5-6</td>
<td>Digital Loop Carrier (DLC) System, Between Remote Terminal (RT) and Customer End, Test Arrangement</td>
<td>5–16</td>
</tr>
<tr>
<td>5-7</td>
<td>Longitudinal Induction Test Circuit for Trunk Circuits</td>
<td>5–18</td>
</tr>
<tr>
<td>5-8</td>
<td>Analog Trunk Circuit Test Arrangement</td>
<td>5–21</td>
</tr>
<tr>
<td>5-9</td>
<td>DLC System, Between RT and COT, Test Arrangement</td>
<td>5–23</td>
</tr>
<tr>
<td>5-10</td>
<td>Longitudinal Induction Test Circuit for Cables</td>
<td>5–24</td>
</tr>
<tr>
<td>5-11</td>
<td>Test Arrangement for Equipment Intended for Coaxial Cables</td>
<td>5–25</td>
</tr>
<tr>
<td>7-1</td>
<td>Class A1 Voltage Limits (Sheet 1 of 2)</td>
<td>7–5</td>
</tr>
<tr>
<td>7-2</td>
<td>Class A2 Voltage Limits (Sheet 1 of 2)</td>
<td>7–8</td>
</tr>
<tr>
<td>7-3</td>
<td>Class A3 Voltage Limits (Sheet 1 of 2)</td>
<td>7–11</td>
</tr>
<tr>
<td>7-4</td>
<td>Test Finger</td>
<td>7–15</td>
</tr>
<tr>
<td>7-5</td>
<td>Interrupted/Tripped Criterion Defining the Duration for Which a Current of a Given Magnitude Is Allowed to Persist</td>
<td>7–20</td>
</tr>
<tr>
<td>7-6</td>
<td>Test Circuit for Determining Volt-Ampere Characteristics</td>
<td>7–21</td>
</tr>
<tr>
<td>9-1</td>
<td>Illustration of Three Options for Grounding an Output of Embedded DC Power Source</td>
<td>9–11</td>
</tr>
<tr>
<td>9-2</td>
<td>Configuration of the DC Fault Test</td>
<td>9–22</td>
</tr>
<tr>
<td>9-3</td>
<td>Configuration of the Proposed EFT Frame Test</td>
<td>9–23</td>
</tr>
<tr>
<td>9-4</td>
<td>An Alternative Configuration for the EFT Test</td>
<td>9–24</td>
</tr>
<tr>
<td>9-5</td>
<td>Laboratory Configuration for the Frame Surge Test</td>
<td>9–25</td>
</tr>
<tr>
<td>9-6</td>
<td>In-Situ Configuration for the Frame Surge Test</td>
<td>9–26</td>
</tr>
<tr>
<td>9-7</td>
<td>Laboratory Configuration of the EUT for the AC Fault Test</td>
<td>9–27</td>
</tr>
<tr>
<td>9-8</td>
<td>In-Situ Configuration of the EUT for the AC Fault Test</td>
<td>9–28</td>
</tr>
<tr>
<td>A-1</td>
<td>Impulse Waveform</td>
<td>A–1</td>
</tr>
</tbody>
</table>
List of Tables

Table 3-1 Radiated Emission Requirement and Objective for Electric Fields . 3–5
Table 3-2 Radiated Emission Requirement for Electric Fields (Doors and Covers Open) . 3–8
Table 3-3 Conducted Emission Limits for AC Power Ports for Class A Equipment . 3–11
Table 3-4 Conducted Emission Limits for AC Power Ports for Class B Equipment . 3–11
Table 3-5 Conducted Emission Requirements for AC Power Ports — Current . 3–12
Table 3-6 Conducted Emission Requirements for Signal Ports — Current . 3–12
Table 3-7 Metallic Voltage Limit on Analog Voiceband Leads . 3–14
Table 3-8 Longitudinal Voltage Limit on Analog Voiceband Leads . 3–14
Table 3-9 Longitudinal RMS Current Limits on Telecommunications Leads . 3–15
Table 3-10 Longitudinal Peak Current Limits on Telecommunications Leads . 3–15
Table 3-11 Conducted Immunity Requirements for Power Ports . 3–19
Table 3-12 Conducted Immunity Requirements for Voiceband and Telecommunications Leads . 3–20
Table 3-13 Instrumentation Bandwidths . 3–22
Table 3-14 1 to 10 GHz Immunity Scan Rate and Step Size . 3–51
Table 3-15 Frequencies of Key Interest . 3–52
Table 4-1 Test Connections of Telecommunications Port . 4–11
Table 4-2 First-Level Lightning Surge (Telecommunications Port) . 4–25
Table 4-3 Protection Test Criteria (Telecommunications Port) . 4–27
Table 4-4 Second-Level Lightning Surge (Telecommunications Port) . 4–30
Table 4-5 First-Level Intra-Building Lightning Surge for One- and Two-Pair Ports (Telecommunications Port) . 4–32
Table 4-6 First-Level Intra-Building Lightning Surge for Multi-Pair Ports (Telecommunications Port) . 4–33
Table 4-7 First-Level AC Power Fault (Telecommunications Port) . 4–38
Table 4-8 Second-Level AC Power Fault (Telecommunications Port) . 4–46
Table 4-9 Second-Level AC Power Fault for Equipment Ports With Secondary Protection (Telecommunications Port) . 4–48
Table 4-10 Second-Level AC Power Fault (Telecommunications Port) . 4–53
Table 4-11 Second-Level AC Power Fault for Equipment Ports With Secondary Protection (Telecommunications Port) . 4–55
Table 4-12 Protection Test Criteria for Equipment To Be Located on High-Exposure Customer Premises and OSP Facilities . 4–59
Table 4-13 Parameter Values Used for Equipment Intended for Agreed Primary Protection . 4–62
Table 4-14 Applicability of EIPP Requirements . 4–66
Table 4-15 Parameter Values Used for Equipment With Integrated Primary Protection . 4–69
Table 4-16 Fusing Coordination for Unprotected Circuits Suitable for Fusing Links . 4–72
Table 4-17 Fusing Coordination for Unprotected Circuits Not Acting as Fuse Links . 4–74
Table 4-18 AC Power Fault Immunity . 4–76
Table 4-19 Second-Level Lightning Surges for EEPP . 4–77
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-20</td>
<td>Lightning Surges for Severe Climatic Conditions</td>
<td>4–77</td>
</tr>
<tr>
<td>4-21</td>
<td>First-Level Lightning Surge Test for Equipment Intended for Use Without an External Protector</td>
<td>4–80</td>
</tr>
<tr>
<td>4-22</td>
<td>First-Level AC Power Fault Test for Equipment Intended for Use Without an External Protector</td>
<td>4–81</td>
</tr>
<tr>
<td>4-23</td>
<td>Second-Level Lightning Surge Test for Equipment Intended for Use Without an External Protector</td>
<td>4–82</td>
</tr>
<tr>
<td>4-24</td>
<td>Second-Level AC Power Fault Test for Equipment Intended for Use Without an External Protector</td>
<td>4–83</td>
</tr>
<tr>
<td>4-25</td>
<td>First-Level Lightning Surge Test for Equipment Intended for Use With an External Protector</td>
<td>4–84</td>
</tr>
<tr>
<td>4-26</td>
<td>First-Level AC Power Fault Test for Equipment Intended for Use With an External Protector</td>
<td>4–84</td>
</tr>
<tr>
<td>4-27</td>
<td>Second-Level Lightning Surge Test for Equipment Intended for Use With an External Protector</td>
<td>4–85</td>
</tr>
<tr>
<td>4-28</td>
<td>Second-Level AC Power Fault Test for Equipment Intended for Use With an External Protector</td>
<td>4–86</td>
</tr>
<tr>
<td>4-29</td>
<td>First-Level Lightning Surge (Antenna Port)</td>
<td>4–89</td>
</tr>
<tr>
<td>4-30</td>
<td>First-Level Lightning Surge (AC Power Port)</td>
<td>4–90</td>
</tr>
<tr>
<td>4-31</td>
<td>Second-Level Lightning Surge (AC Power Port)</td>
<td>4–90</td>
</tr>
<tr>
<td>4-32</td>
<td>First-Level Lightning Surge (AC Power Port)</td>
<td>4–91</td>
</tr>
<tr>
<td>5-1</td>
<td>Longitudinal Induction Test Circuit Criteria for Long (> 20 kft) Loops</td>
<td>5–4</td>
</tr>
<tr>
<td>5-2</td>
<td>Longitudinal Induction Test Circuit Criteria for Short (< 20 kft) Loops</td>
<td>5–10</td>
</tr>
<tr>
<td>5-3</td>
<td>Longitudinal Induction Test Circuit Criteria for Trunks</td>
<td>5–19</td>
</tr>
<tr>
<td>5-4</td>
<td>Longitudinal Induction Test Circuit Criteria for Coaxial Cables</td>
<td>5–24</td>
</tr>
<tr>
<td>7-1</td>
<td>Values of Maximum Test Resistance</td>
<td>7–4</td>
</tr>
<tr>
<td>7-2</td>
<td>Accessibility to Continuous Class-A Voltages</td>
<td>7–14</td>
</tr>
<tr>
<td>9-1</td>
<td>Test Overcurrent Device Selection</td>
<td>9–22</td>
</tr>
<tr>
<td>9-2</td>
<td>Grounding Conductor Size for Fuse-Less Protector Block in the EUT</td>
<td>9–29</td>
</tr>
<tr>
<td>9-3</td>
<td>Grounding Conductor Size for Fused Protector Block in the EUT</td>
<td>9–29</td>
</tr>
<tr>
<td>10-1</td>
<td>Undervoltage Transient Waveform Characteristics (Figure 4 of ANSI T1.315-2001)</td>
<td>10–3</td>
</tr>
<tr>
<td>10-2</td>
<td>Overvoltage Transient Waveform Characteristics (Figure 3 of ANSI T1.315-2001)</td>
<td>10–3</td>
</tr>
<tr>
<td>10-3</td>
<td>Impulse Transient Waveform Characteristics (Figure 2 of ANSI T1.315-2001)</td>
<td>10–4</td>
</tr>
<tr>
<td>A-1</td>
<td>Waveform Tolerances</td>
<td>A–2</td>
</tr>
<tr>
<td>B-1</td>
<td>Applicable Criteria Set A for Network Equipment</td>
<td>B–1</td>
</tr>
<tr>
<td>B-2</td>
<td>Applicable Criteria Set B for Network Equipment Ports</td>
<td>B–1</td>
</tr>
<tr>
<td>B-3</td>
<td>Application Chart for Equipment Ports</td>
<td>B–4</td>
</tr>
</tbody>
</table>