Table of Contents

Preface

1 Introduction

1.1 Purpose and Scope of Document .. 1–2
1.2 Organization ... 1–2
1.3 Harmonization With GR-1221-CORE 1–3
1.4 Reasons for Reissue .. 1–3
 1.4.1 Changes from GR-1209-CORE, Issue 3 1–3
 1.4.2 Changes from GR-1209-CORE, Issue 2 1–4
1.5 Requirements Terminology .. 1–4
1.6 Requirement Labeling Conventions 1–5
 1.6.1 Numbering of Requirement and Related Objects 1–5
 1.6.2 Requirement, Conditional Requirement, and Objective Identification .. 1–6

2 General Information

2.1 Scope ... 2–1
2.2 Passive Optical Components - Couplers and WDMs 2–2
 2.2.1 General Product Description 2–2
 2.2.2 Coupler and WDM Classes .. 2–3
 2.2.3 Coupler and WDM Technology 2–5
 2.2.4 Coupler and WDM Applications 2–7
 2.2.4.1 Bidirectional Transmission 2–7
 2.2.4.1.1 Steps for Converting to Bidirectional Interoffice Transmission .. 2–9
 2.2.4.2 Hybrid Fiber Coax (HFC) Architecture for Video and Telephony .. 2–10
 2.2.4.3 Fiber in the Loop Systems 2–12
2.3 Passive Optical Components - Filters 2–14
 2.3.1 General Product Information 2–14
 2.3.2 Filter Classes .. 2–14
 2.3.3 Fiber Optic Filter Technology 2–15
 2.3.3.1 Dielectric Interference Coatings 2–15
 2.3.3.2 Fiber Optic Bragg Grating 2–15
 2.3.3.3 Fiber Fabry-Perot Filters 2–16
 2.3.4 Fiber Optic Filter Applications 2–16
 2.3.4.1 Fiber Optic Filters in EDFAs 2–16
 2.3.4.1.1 Optical Pump Filters for EDFAs 2–17
 2.3.4.1.2 EDFA Pump Power Suppression/Recycling 2–17
 2.3.4.1.3 ASE Suppression in EDFAs 2–18
 2.3.4.1.4 Gain Flattening in EDFAs 2–19
 2.3.4.2 Fiber Optic Filters in Multiwavelength Networks 2–19
 2.3.4.3 Wavelength Add-Drop Multiplexers (WADMs) 2–21
 2.3.4.4 Fiber Optic Filters in Remote Fiber Test Systems ... 2–23
2.4 Passive Optical Components - Isolators and Circulators 2–23
 2.4.1 General Product Description 2–23
 2.4.2 Isolator and Circulator Classes 2–25
2.4.2.1 Polarization/Analyzer Isolators .. 2–25
2.4.2.2 Walk-off Isolators ... 2–27
2.4.2.3 Optical Circulators .. 2–28
2.4.3 Isolator Technology ... 2–31
2.4.4 Isolator and Circulator Applications 2–32
2.4.4.1 Transmitter Protection ... 2–32
2.4.4.2 Optical Amplifiers .. 2–33
2.4.4.3 In-Line Noise Reduction ... 2–34
2.4.4.4 Circulator Applications .. 2–35
2.4.4.4.1 Bidirectional Transmission 2–35
2.4.4.4.2 Optical Amplifiers and Systems 2–35
2.4.4.4.3 Dispersion Compensation ... 2–36
2.4.4.4.4 Optical MUX/DEMUX ... 2–36
2.5 Passive Optical Modules .. 2–37

3 General and Design Criteria

3.1 Documentation ... 3–1
3.1.1 General Documentation .. 3–1
3.1.2 Workcenter Information Package 3–2
3.2 Marking, Packaging, and Shipping 3–2
3.2.1 Packaged Equipment Shock Criteria 3–3
3.2.1.1 Category A Containers .. 3–3
3.2.1.2 Category B Containers .. 3–4
3.2.2 Unpackaged Equipment Shock Criteria 3–4
3.2.3 Transportation Vibration Criteria 3–5
3.2.3.1 Transportation Environment 3–5
3.3 Physical Design Criteria .. 3–6
3.3.1 General Physical Design Criteria 3–6
3.3.2 Optical Fiber ... 3–6
3.3.3 Optical Connectors ... 3–7
3.3.4 Materials ... 3–8
3.3.4.1 Toxicity ... 3–8
3.3.4.2 Corrosion Resistance ... 3–8
3.3.4.3 Dissimilar Metals ... 3–8
3.3.4.4 Fungus Resistance .. 3–8
3.3.4.5 Flammability ... 3–8
3.3.5 Safety ... 3–9
3.3.6 Mounting ... 3–9
3.4 Passive Optical Component Qualification 3–10
3.5 Reliability Assurance ... 3–11
3.6 Quality Technology Program .. 3–12
3.7 Application Environments ... 3–13
3.7.1 Background .. 3–13
3.7.2 Environmental Classification Definitions 3–14
4 Optical Performance Criteria

4.1 Optical Bandpass .. 4–4
 4.1.1 Optical Bandpass - General 4–4
 4.1.2 Optical Bandpass Guidelines 4–5
 4.1.3 Optical Bandpass Testing 4–8
 4.1.4 DWDM Bandpass Testing 4–9
 4.1.5 Center Wavelength Definition 4–9
 4.1.6 Central Frequency of DWDM Components Testing 4–10

4.2 Insertion Loss .. 4–10
 4.2.1 Insertion Loss for All Products 4–10
 4.2.2 Insertion Loss for Optical Isolators and Circulators 4–12
 4.2.3 Insertion Loss for Fiber Optic Filters 4–13
 4.2.4 Insertion Loss for Gain Flattening Filters 4–13
 4.2.5 Insertion Loss Testing 4–14

4.3 Uniformity .. 4–14
 4.3.1 Uniformity for All Products 4–14
 4.3.2 Uniformity for Optical Isolators and Circulators 4–16
 4.3.3 Uniformity (Flatness) for Fiber Optic Filters 4–17
 4.3.4 Uniformity Testing 4–17

4.4 Isolation .. 4–17
 4.4.1 WDM Wavelength Isolation or Far-End Crosstalk (FEXT) 4–17
 4.4.1.1 WDM Wavelength Isolation or FEXT Testing 4–18
 4.4.1.2 DWDM Wavelength Isolation or Adjacent Channel Crosstalk 4–18

 4.4.2 Isolation for Optical Isolators and Circulators 4–19
 4.4.3 Isolation for Fiber Optic Filters 4–19

4.5 Directivity .. 4–20
 4.5.1 Directivity for All Products 4–20
 4.5.2 Directivity for Optical Isolators and Circulators 4–21
 4.5.3 Directivity for Fiber Optic Filters 4–21
 4.5.4 Directivity Testing 4–21

4.6 Return Loss .. 4–21
 4.6.1 Return Loss for All Products 4–21
 4.6.2 Return Loss for Optical Isolators and Circulators .. 4–22
 4.6.3 Return Loss for Fiber Optic Filters 4–22

4.7 Polarization-Dependent Loss (PDL) 4–23
 4.7.1 PDL for All Products 4–23
 4.7.2 PDL for Optical Isolators and Circulators 4–23
 4.7.3 PDL for Fiber Optic Filters 4–24
 4.7.4 PDL Testing ... 4–24

4.8 Polarization-Dependent Wavelength (PDW) 4–25
 4.8.1 PDW for Fiber Optic Filters 4–25
 4.8.2 PDW Testing .. 4–26

4.9 Polarization Mode Dispersion (PMD) 4–27
 4.9.1 PMD for All Products 4–27
 4.9.2 PMD for Optical Isolators and Circulators 4–27
 4.9.3 PMD for Fiber Optic Filters 4–27
 4.9.4 PMD Testing .. 4–28

4.10 Temperature Effects on DWDM Components 4–28

4.11 Other Fiber Optic Filter-Specific Criteria 4–28
5 Environmental and Mechanical Performance Criteria

5.1 Performance Criteria .. 5–1
5.2 Standard Conditions of Test 5–1
5.3 Operating Environments 5–2
5.4 Environmental and Mechanical Criteria 5–2
 5.4.1 Transportation and Handling Criteria 5–3
 5.4.1.1 Temperature-Humidity Aging 5–3
 5.4.1.2 Vibration ... 5–4
 5.4.1.3 Component Impact 5–5
 5.4.1.4 Module Impact 5–5
 5.4.1.5 Temperature Cycling 5–6
 5.4.2 Operational Performance Criteria 5–6
 5.4.2.1 Temperature-Humidity Cycle: Controlled Environment 5–6
 5.4.2.2 Temperature-Humidity Cycle: Uncontrolled Environment 5–7
 5.4.2.3 Water Immersion 5–9
 5.4.2.4 Controlled DWDM Temperature Effects 5–9
 5.4.2.5 Uncontrolled DWDM Temperature Effects 5–9
 5.4.3 Fiber Integrity Criteria 5–10
 5.4.3.1 Fiber Flex .. 5–10
 5.4.3.2 Fiber Twist .. 5–10
 5.4.3.3 Fiber Side Pull 5–10
 5.4.3.4 Fiber and Cable Retention (Straight Pull) 5–11
5.5 Optical Measurement Facilities 5–12

Appendix A: The Transfer Matrix

A.1 Definition of Terms .. A–1
A.2 Example ... A–3

Appendix B: Example Operational Shock and Vibration Proposal

B.1 Definitions ... B–1
B.2 Test Conditions .. B–1
B.3 Test Fixtures .. B–2
B.4 Sample Size .. B–2
B.5 Measurement Methodology B–3
B.6 Acceptance Criteria .. B–3
Appendix C: References

C.1 Telcordia Documents ... C–1
C.2 External References .. C–2
C.3 Telcordia Reference Notes .. C–5
 C.3.1 Contact Telcordia ... C–5
 C.3.2 Order Documents Online From the Telcordia Information SuperStore . C–5
 C.3.3 Telcordia Web Sites for Generic Requirements Information C–6
 C.3.4 Telcordia Licensing Agreements C–6

Appendix D: Acronyms

Appendix E: Glossary

Requirement-Object Index
List of Figures

Figure 2-1 Symbols for Passive Components: (a) Star Coupler, (b) Tree Coupler, Splitter or Combiner, (c) WDM 2–2
Figure 2-2 Example of Common Coupler and WDM Packages 2–3
Figure 2-3 Example of Insertion Loss versus Wavelength for Three Types of 1 x 2 Couplers ... 2–4
Figure 2-4 Three Splitters as Examples of Fabrication Technologies 2–5
Figure 2-5 Arrayed Waveguide .. 2–7
Figure 2-6 1 x 1 Protected a) Unidirectional Transmission and b) Bidirectional Transmission Using Couplers or WDMs 2–8
Figure 2-7 N-Channel Bidirectional WDM Transmission 2–9
Figure 2-8 A Sample Frequency Allocation Spectrum for Video and POTS Services .. 2–10
Figure 2-9 An Example of Hybrid Fiber/Coax (HFC) Architecture With 1 x 4 Splitting ... 2–11
Figure 2-10 A Point-to-Multipoint FITL System With 1 x 8 Splitting 2–12
Figure 2-11 Point-to-Multipoint ODN Reference Model 2–13
Figure 2-12 Block Diagram of a Fiber Optic Filter 2–14
Figure 2-13 Forming a Grating Structure in an Optical Fiber 2–16
Figure 2-14 1480-nm Pump Filter in an EDFA 2–17
Figure 2-15 Pump Power Suppression Using a Longpass Filter at the Amplifier Output .. 2–18
Figure 2-16 Fiber Bragg-Grating Filter for Pump Power Reflection 2–18
Figure 2-17 Example of Wideband Uniform Gain Spectrum 2–19
Figure 2-18 Broadcast-and-Select WDM Star Network 2–20
Figure 2-19 (a) Wavelength-Routing WDM Network and (b) Associated Wavelength Assignment Table .. 2–21
Figure 2-20 WADM Using Optical Circulators .. 2–22
Figure 2-21 WADM Using Dielectric Thin Film Bandpass Filters 2–22
Figure 2-22 Symbols for (a) an Optical Isolator; (b) a Three-Port Optical Circulator .. 2–23
Figure 2-23 Schematic Showing Operation of a Magneto-Optical Isolator 2–24
Figure 2-24 An Example of Temperature Dependence of the Backward Loss in Single-Stage and Double-Stage Isolators 2–25
Figure 2-25 Configuration of a Cascaded Optical Isolator 2–26
Figure 2-26 Operating Principle of a Reciprocal Isolator 2–26
Figure 2-27 Operating Principle for a Polarization-Independent Walk-Off Isolator ... 2–27
Figure 2-28 Schematic for a Polarization-Independent Quasi-Circulator 2–29
Figure 2-29 Positions and Polarization of Beam 2 and Beam 2’ on Some Element Surfaces (a) A – A’, (b) B – B’, (c) C – C’, and (d) D – D’ in Figure 2.28 ... 2–30
Figure 2-30 Isolation Bandwidths for Isolators Made Using Yttrium Iron Garnet (YIG) and Bismuth Iron Garnet (BIG) at 1550 nm 2–31
Figure 2-31 A Schematic Configuration of the DFB Integrated Laser Module 2–33
Figure 2-32 OFA Gain Module Followed (a) or Preceded (b) by an Isolator 2–34
Figure 2-33 Three Discrete Reflections Between a Transmitter and Receiver .. 2–34
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-34</td>
<td>Bidirectional Transmission Using Circulators</td>
<td>2–35</td>
</tr>
<tr>
<td>2-35</td>
<td>Dispersion Compensation Using an Optical Circulator</td>
<td>2–36</td>
</tr>
<tr>
<td>2-36</td>
<td>A Schematic for an Optical Add/Drop Multiplexer Using Optical Circulators</td>
<td>2–37</td>
</tr>
<tr>
<td>3-1</td>
<td>Category A Container Packaged Equipment Shock Criteria:</td>
<td>3–4</td>
</tr>
<tr>
<td></td>
<td>Table 4-7 of GR-63</td>
<td></td>
</tr>
<tr>
<td>3-2</td>
<td>Transportation Vibration Environment: Figure 4-4 in GR-63</td>
<td>3–5</td>
</tr>
<tr>
<td>4-1</td>
<td>Center Wavelength, Offset, and Bandwidth for a Demultiplexer</td>
<td>4–5</td>
</tr>
<tr>
<td>4-2</td>
<td>DWDM Reflection Spectrum</td>
<td>4–8</td>
</tr>
<tr>
<td>4-3</td>
<td>Gain Flattening Filter Spectrum</td>
<td>4–14</td>
</tr>
<tr>
<td>4-4</td>
<td>A Uniformity Measurement Example for a 1 x 2 Coupler</td>
<td>4–16</td>
</tr>
<tr>
<td>4-5</td>
<td>Configuration for Measuring Polarization-Dependent Loss</td>
<td>4–25</td>
</tr>
<tr>
<td>4-6</td>
<td>Polarization-Affected Wavelength Offset</td>
<td>4–26</td>
</tr>
<tr>
<td>5-1</td>
<td>Controlled Temperature Cycling Test Profile</td>
<td>5–7</td>
</tr>
<tr>
<td>5-2</td>
<td>Uncontrolled Temperature Cycling Test Thermal Profile</td>
<td>5–8</td>
</tr>
<tr>
<td>5-3</td>
<td>Example of Transmission Measurement Facility</td>
<td>5–12</td>
</tr>
<tr>
<td>B-1</td>
<td>Output Power Variation</td>
<td>B–1</td>
</tr>
</tbody>
</table>
List of Tables

Table 3-1	Category B Container Packaged Equipment Shock Criteria: Table 4-8 in GR-63	3–4
Table 3-2	Unpackaged Equipment Shock Criteria: Table 4-9 in GR-63	3–5
Table 4-1	Optical Performance Criteria Summary	4–1
Table 4-2	Nominal Optical Bandpass Ranges	4–4
Table 4-3	Grid Central Frequencies	4–6
Table 4-4	Insertion Loss Criteria for Digital and AM-VSB Transmission	4–11
Table 4-5	Insertion Loss Criteria for 1 x N and 2 x N Couplers	4–12
Table 4-6	Uniformity Criteria and Effective Minimum Loss	4–15
Table 4-7	PDL Requirement for MxN Couplers	4–23
Table 4-8	Polarization Mode Dispersion of Passive Optical Components	4–27
Table 5-1	Environmental and Mechanical Requirements	5–3
Table 5-2	Classification Guidelines for Impact Testing	5–6
Table 5-3	Fiber Ribbon Cable Retention Loads	5–12
Table B-1	Operational Shock and Vibration Test Conditions	B–2
Table B-2	Operational Shock and Vibration Measurement Requirements	B–3
Table B-3	Operational Shock and Vibration Acceptance Criteria	B–3